Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BMC Cancer ; 24(1): 437, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594603

RESUMO

BACKGROUND: Soft tissue sarcomas (STS), have significant inter- and intra-tumoral heterogeneity, with poor response to standard neoadjuvant radiotherapy (RT). Achieving a favorable pathologic response (FPR ≥ 95%) from RT is associated with improved patient outcome. Genomic adjusted radiation dose (GARD), a radiation-specific metric that quantifies the expected RT treatment effect as a function of tumor dose and genomics, proposed that STS is significantly underdosed. STS have significant radiomic heterogeneity, where radiomic habitats can delineate regions of intra-tumoral hypoxia and radioresistance. We designed a novel clinical trial, Habitat Escalated Adaptive Therapy (HEAT), utilizing radiomic habitats to identify areas of radioresistance within the tumor and targeting them with GARD-optimized doses, to improve FPR in high-grade STS. METHODS: Phase 2 non-randomized single-arm clinical trial includes non-metastatic, resectable high-grade STS patients. Pre-treatment multiparametric MRIs (mpMRI) delineate three distinct intra-tumoral habitats based on apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) sequences. GARD estimates that simultaneous integrated boost (SIB) doses of 70 and 60 Gy in 25 fractions to the highest and intermediate radioresistant habitats, while the remaining volume receives standard 50 Gy, would lead to a > 3 fold FPR increase to 24%. Pre-treatment CT guided biopsies of each habitat along with clip placement will be performed for pathologic evaluation, future genomic studies, and response assessment. An mpMRI taken between weeks two and three of treatment will be used for biological plan adaptation to account for tumor response, in addition to an mpMRI after the completion of radiotherapy in addition to pathologic response, toxicity, radiomic response, disease control, and survival will be evaluated as secondary endpoints. Furthermore, liquid biopsy will be performed with mpMRI for future ancillary studies. DISCUSSION: This is the first clinical trial to test a novel genomic-based RT dose optimization (GARD) and to utilize radiomic habitats to identify and target radioresistance regions, as a strategy to improve the outcome of RT-treated STS patients. Its success could usher in a new phase in radiation oncology, integrating genomic and radiomic insights into clinical practice and trial designs, and may reveal new radiomic and genomic biomarkers, refining personalized treatment strategies for STS. TRIAL REGISTRATION: NCT05301283. TRIAL STATUS: The trial started recruitment on March 17, 2022.


Assuntos
Temperatura Alta , Sarcoma , Humanos , 60570 , Sarcoma/diagnóstico por imagem , Sarcoma/genética , Sarcoma/radioterapia , Genômica , Doses de Radiação
2.
J Appl Clin Med Phys ; : e14303, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377378

RESUMO

PURPOSE: A workflow/planning strategy delivering low-dose radiation therapy (LDRT) (1 Gy) to all polymetastatic diseases using conventional planning/delivery (Raystation/Halcyon = "conventional") and the AI-based Ethos online adaptive RT (oART) platform is developed/evaluated. METHODS: Using retrospective data for ten polymetastatic non-small cell lung cancer patients (5-52 lesions each) with PET/CTs, gross tumor volumes (GTVs) were delineated using PET standardized-uptake-value (SUV) thresholding. A 1 cm uniform expansion of GTVs to account for setup/contour uncertainty and organ motion-generated planning target volumes (PTVs). Dose optimization/calculation used the diagnostic CT from PET/CT. Dosimetric objectives were: Dmin,0.03cc ≥ 95% (acceptable variation (Δ) ≥ 90%), V100% ≥ 95% (Δ ≥ 90%), and D0.03cc ≤ 120% (Δ ≤ 125%). Additionally, online adaptation was simulated. When available, subsequent diagnostic CT was used to represent on-treatment CBCT. Otherwise, the CT from PET/CT used for initial planning was deformed to simulate clinically representative changes. RESULTS: All initial plans generated, both for Raystation and Ethos, achieved clinical goals within acceptable variation. For all patients, Dmin,0.03cc ≥ 95%, V100% ≥ 95%, and D0.03cc ≤ 120% goals were achieved for 84.8%/99.5%, 97.7%/98.7%, 97.4%/92.3%, in conventional/Ethos plans, respectively. The ratio of 50% isodose volume to PTV volume (R50% ), maximum dose at 2 cm from PTV (D2cm ), and the ratio of the 100% isodose volume to PTV volume (conformity index) in Raystation/Ethos plans were 7.9/5.9; 102.3%/88.44%; and 0.99/1.01, respectively. In Ethos, online adapted plans maintained PTV coverage whereas scheduled plans often resulted in geographic misses due to changes in tumor size, patient position, and body habitus. The average total duration of the oART workflow was 26:15 (min:sec) ranging from 6:43 to 57:30. The duration of each oART workflow step as a function of a number of targets showed a low correlation coefficient for influencer generation and editing (R2  = 0.04 and 0.02, respectively) and high correlation coefficient for target generation, target editing and plan generation (R2  = 0.68, 0.63 and 0.69, respectively). CONCLUSIONS: This study demonstrates feasibility of conventional planning/treatment with Raystation/Halcyon and highlights efficiency gains when utilizing semi-automated planning/online-adaptive treatment with Ethos for immunostimulatory LDRT conformally delivered to all sites of polymetastatic disease.

3.
Phys Imaging Radiat Oncol ; 28: 100505, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38045642

RESUMO

Background and purpose: Diffusion weighted imaging (DWI) allows for the interrogation of tissue cellularity, which is a surrogate for cellular proliferation. Previous attempts to incorporate DWI into the workflow of a 0.35 T MR-linac (MRL) have lacked quantitative accuracy. In this study, accuracy, repeatability, and geometric precision of apparent diffusion coefficient (ADC) maps produced using an echo planar imaging (EPI)-based DWI protocol on the MRL system is illustrated, and in vivo potential for longitudinal patient imaging is demonstrated. Materials and methods: Accuracy and repeatability were assessed by measuring ADC values in a diffusion phantom at three timepoints and comparing to reference ADC values. System-dependent geometric distortion was quantified by measuring the distance between 93 pairs of phantom features on ADC maps acquired on a 0.35 T MRL and a 3.0 T diagnostic scanner and comparing to spatially precise CT images. Additionally, for five sarcoma patients receiving radiotherapy on the MRL, same-day in vivo ADC maps were acquired on both systems, one of which at multiple timepoints. Results: Phantom ADC quantification was accurate on the 0.35 T MRL with significant discrepancies only seen at high ADC. Average geometric distortions were 0.35 (±0.02) mm and 0.85 (±0.02) mm in the central slice and 0.66 (±0.04) mm and 2.14 (±0.07) mm at 5.4 cm off-center for the MRL and diagnostic system, respectively. In the sarcoma patients, a mean pretreatment ADC of 910x10-6 (±100x10-6) mm2/s was measured on the MRL. Conclusions: The acquisition of accurate, repeatable, and geometrically precise ADC maps is possible at 0.35 T with an EPI approach.

4.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958374

RESUMO

Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.

5.
J Appl Clin Med Phys ; 24(12): e14134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621133

RESUMO

PURPOSE: A planning strategy was developed and the utility of online-adaptation with the Ethos CBCT-guided ring-gantry adaptive radiotherapy (ART) system was evaluated using retrospective data from Head-and-neck (H&N) patients that required clinical offline adaptation during treatment. METHODS: Clinical data were used to re-plan 20 H&N patients (10 sequential boost (SEQ) with separate base and boost plans plus 10 simultaneous integrated boost (SIB)). An optimal approach, robust to online adaptation, for Ethos-initial plans using clinical goal prioritization was developed. Anatomically-derived isodose-shaping helper structures, air-density override, goals for controlling hotspot location(s), and plan normalization were investigated. Online adaptation was simulated using clinical offline adaptive simulation-CTs to represent an on-treatment CBCT. Dosimetric comparisons were based on institutional guidelines for Clinical-initial versus Ethos-initial plans and Ethos-scheduled versus Ethos-adapted plans. Timing for five components of the online adaptive workflow was analyzed. RESULTS: The Ethos H&N planning approach generated Ethos-initial SEQ plans with clinically comparable PTV coverage (average PTVHigh V100%  = 98.3%, Dmin,0.03cc  = 97.9% and D0.03cc  = 105.5%) and OAR sparing. However, Ethos-initial SIB plans were clinically inferior (average PTVHigh V100%  = 96.4%, Dmin,0.03cc  = 93.7%, D0.03cc  = 110.6%). Fixed-field IMRT was superior to VMAT for 93.3% of plans. Online adaptation succeeded in achieving conformal coverage to the new anatomy in both SEQ and SIB plans that was even superior to that achieved in the initial plans (which was due to the changes in anatomy that simplified the optimization). The average adaptive workflow duration for SIB, SEQ base and SEQ boost was 30:14, 22.56, and 14:03 (min: sec), respectively. CONCLUSIONS: With an optimal planning approach, Ethos efficiently auto-generated dosimetrically comparable and clinically acceptable initial SEQ plans for H&N patients. Initial SIB plans were inferior and clinically unacceptable, but adapted SIB plans became clinically acceptable. Online adapted plans optimized dose to new anatomy and maintained target coverage/homogeneity with improved OAR sparing in a time-efficient manner.


Assuntos
Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Órgãos em Risco
6.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162853

RESUMO

Background and Objective: Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the optimization model is usually large-scale and non-smooth. This work aims to devise a simple but universal solver for optimization models. Methods: The alternating direction method of multipliers (ADMM) algorithm is a simple and effective solver of the optimization models. However, there always exists a sub-problem that has not closed-form solution. One may use gradient descent algorithm to solve this sub-problem, but the step-size selection via line search is time-consuming. Or, one may use fast Fourier transform (FFT) to get a closed-form solution if the system matrix and the sparse transform matrix are both of special structure. In this work, we propose a simple but universal fully linearized ADMM (FL-ADMM) algorithm that avoids line search to determine step-size and applies to system matrix and sparse transform of any structures. Results: We derive the FL-ADMM algorithm instances for three total variation (TV) models in 2D computed tomography (CT). Further, we validate and evaluate one FL-ADMM algorithm and explore how the two important factors impact convergence rate. Also, we compare this algorithm with the Chambolle-Pock algorithm via real CT phantom reconstructions. These studies show that the FL-ADMM algorithm may accurately solve optimization models in image reconstruction. Conclusion: The FL-ADMM algorithm is a simple, effective, convergent and universal solver of optimization models in image reconstruction. Compared to the existing ADMM algorithms, the new algorithm does not need time-consuming step-size line-search or special demand to system matrix and sparse transform. It is a rapid prototyping tool for optimization based image reconstruction.

7.
JTO Clin Res Rep ; 4(5): 100488, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37159821

RESUMO

Introduction: The recent results from the Nordic-HILUS study indicate stereotactic body radiation therapy (SBRT) is associated with high-grade toxicity for ultracentral (UC) tumors. We hypothesized that magnetic resonance-guided SBRT (MRgSBRT) or hypofractionated radiation therapy (MRgHRT) enables the safe delivery of high-dose radiation to central and UC lung lesions. Methods: Patients with UC or central lesions were treated with MRgSBRT/MRgHRT with real-time gating or adaptation. Central lesions were defined as per the Radiation Therapy Oncology Group and UC as per the HILUS study definitions: (1) group A or tumors less than 1 cm from the trachea and/or mainstem bronchi; or (2) group B or tumors less than 1 cm from the lobar bronchi. The Kaplan-Meier estimate and log-rank test were used to estimate survival. Associations between toxicities and other patient factors were tested using the Mann-Whitney U test and Fisher's exact test. Results: A total of 47 patients were included with a median follow-up of 22.9 months (95% confidence interval: 16.4-29.4). Most (53%) had metastatic disease. All patients had central lesions and 55.3% (n = 26) had UC group A. The median distance from the proximal bronchial tree was 6.0 mm (range: 0.0-19.0 mm). The median biologically equivalent dose (α/ß = 10) was 105 Gy (range: 75-151.2). The most common radiation schedule was 60 Gy in eight fractions (40.4%). Most (55%) had previous systemic therapy, 32% had immunotherapy and 23.4% had previous thoracic radiation therapy. There were 16 patients who underwent daily adaptation. The 1-year overall survival was 82% (median = not reached), local control 87% (median = not reached), and progression-free survival 54% (median = 15.1 mo, 95% confidence interval: 5.1-25.1). Acute toxicity included grade 1 (26%) and grade 2 (21%) with only two patients experiencing grade 3 (4.3%) in the long term. No grade 4 or 5 toxicities were seen. Conclusions: Previous studies noted high rates of toxicity after SBRT to central and UC lung lesions, with reports of grade 5 toxicities. In our cohort, the use of MRgSBRT/MRgHRT with high biologically effective doses was well tolerated, with two grade 3 toxicities and no grade 4/5.

8.
J Appl Clin Med Phys ; 24(6): e13999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37096305

RESUMO

3D printing in medical physics provides opportunities for creating patient-specific treatment devices and in-house fabrication of imaging/dosimetry phantoms. This study characterizes several commercial fused deposition 3D printing materials with some containing nonstandard compositions. It is important to explore their similarities to human tissues and other materials encountered in patients. Uniform cylinders with infill from 50 to 100% at six evenly distributed intervals were printed using 13 different filaments. A novel approach rotating infill angle 10o between each layer avoids unwanted patterns. Five materials contained high-Z/metallic components. A clinical CT scanner with a range of tube potentials (70, 80, 100, 120, 140 kVp) was used. Density and average Hounsfield unit (HU) were measured. A commercial GAMMEX phantom mimicking various human tissues provides a comparison. Utility of the lookup tables produced is demonstrated. A methodology for calibrating print materials/parameters for a desired HU is presented. Density and HU were determined for all materials as a function of tube voltage (kVp) and infill percentage. The range of HU (-732.0-10047.4 HU) and physical densities (0.36-3.52 g/cm3 ) encompassed most tissues/materials encountered in radiology/radiotherapy applications with many overlapping those of human tissues. Printing filaments doped with high-Z materials demonstrated increased attenuation due to the photoelectric effect with decreased kVp, as found in certain endogenous materials (e.g., bone). HU was faithfully reproduced (within one standard deviation) in a 3D-printed mimic of a commercial anthropomorphic phantom section. Characterization of commercially available 3D print materials facilitates custom object fabrication for use in radiology and radiation oncology, including human tissue and common exogenous implant mimics. This allows for cost reduction and increased flexibility to fabricate novel phantoms or patient-specific devices imaging and dosimetry purposes. A formalism for calibrating to specific CT scanner, printer, and filament type/batch is presented. Utility is demonstrated by printing a commercial anthropomorphic phantom copy.


Assuntos
Radioterapia (Especialidade) , Humanos , Tomografia Computadorizada por Raios X/métodos , Radiografia , Impressão Tridimensional , Radiometria , Imagens de Fantasmas
9.
Cancers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37046741

RESUMO

Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.

10.
Cureus ; 14(8): e27558, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36059359

RESUMO

MRI-guided radiation therapy (MRgRT) enables real-time imaging during treatment and daily online adaptive planning. It is particularly useful for areas of treatment that have been previously excluded or restricted from ablative doses due to potential damage to adjacent normal tissue. In certain cases, ablative doses to metastatic lesions may be justified and treated with MRgRT using video-assisted gated breath-hold adjustments throughout delivery. The workflow relies on patient biofeedback and auditory cues. A 74-year-old deaf male with a history of prostate cancer status post prostatectomy was found to have an enlarged cervical lymph node, which was excised with histopathology demonstrating Merkel cell carcinoma. Approximately one year after treatment with two cycles of pembrolizumab, which was subsequently discontinued due to toxicity, surveillance imaging demonstrated an enlarging left adrenal nodule. It was initially stable for an additional seven months with pembrolizumab rechallenge but was again found enlarged on subsequent imaging. The patient underwent MRg stereotactic body radiation therapy (MRgSBRT) to a total dose of 60 Gy in five fractions to this isolated site of progression. The patient was equipped with mirrored glasses to view the tracking structure with respect to gating the boundary structure, and the traditional reliance on verbal cues for coaching was reimagined to rely on visual cues instead. Follow-up positron emission tomography/CT (PET/CT) two weeks after treatment demonstrated interval resolution of the left adrenal metastatic nodule and a return to symmetric bilateral adrenal gland metabolic activity. The necessary MRgSBRT treatment for single metastatic lesions near normal tissue structures relies on verbal cues and coaching. However, deaf patients are unable to receive this treatment according to the traditional workflow model. Unique opportunities exist for the implementation of culturally competent care for the Deaf community, relying more heavily on visual cues, in radiation oncology practice.

11.
Technol Cancer Res Treat ; 21: 15330338221099113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521966

RESUMO

Purpose: Radiomics entails the extraction of quantitative imaging biomarkers (or radiomics features) hypothesized to provide additional pathophysiological and/or clinical information compared to qualitative visual observation and interpretation. This retrospective study explores the variability of radiomics features extracted from images acquired with the 0.35 T scanner of an integrated MRI-Linac. We hypothesized we would be able to identify features with high repeatability and reproducibility over various imaging conditions using phantom and patient imaging studies. We also compared findings from the literature relevant to our results. Methods: Eleven scans of a Magphan® RT phantom over 13 months and 11 scans of a ViewRay Daily QA phantom over 11 days constituted the phantom data. Patient datasets included 50 images from ten anonymized stereotactic body radiation therapy (SBRT) pancreatic cancer patients (50 Gy in 5 fractions). A True Fast Imaging with Steady-State Free Precession (TRUFI) pulse sequence was selected, using a voxel resolution of 1.5 mm × 1.5 mm × 1.5 mm and 1.5 mm × 1.5 mm × 3.0 mm for phantom and patient data, respectively. A total of 1087 shape-based, first, second, and higher order features were extracted followed by robustness analysis. Robustness was assessed with the Coefficient of Variation (CoV < 5%). Results: We identified 130 robust features across the datasets. Robust features were found within each category, except for 2 second-order sub-groups, namely, Gray Level Size Zone Matrix (GLSZM) and Neighborhood Gray Tone Difference Matrix (NGTDM). Additionally, several robust features agreed with findings from other stability assessments or predictive performance studies in the literature. Conclusion: We verified the stability of the 0.35 T scanner of an integrated MRI-Linac for longitudinal radiomics phantom studies and identified robust features over various imaging conditions. We conclude that phantom measurements can be used to identify robust radiomics features. More stability assessment research is warranted.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
Med Phys ; 49(8): 5400-5408, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35608256

RESUMO

PURPOSE: There is growing interest in the use of modern 3D printing technology to implement intensity-modulated radiation therapy (IMRT) on the preclinical scale that is analogous to clinical IMRT. However, current 3D-printed IMRT methods suffer from complex modulation patterns leading to long delivery times, excess filament usage, and less accurate compensator fabrication. In this work, we have developed a total variation regularization (TVR) approach to address these issues. METHODS: TVR-IMRT was used to optimize the beamlet intensity map, which was then converted to a thickness of the corresponding compensator attenuation region in copper-doped polylactic acid (PLA) filament. IMRT and TVR-IMRT heart and lung plans were generated for two different mice using three, five, or seven gantry angles. The total compensator thickness, total variation of compensator beamlet thicknesses, total variation of beamlet intensities, and exposure time were compared. The individual field doses and composite dose were delivered to film for one plan and gamma analysis was performed. RESULTS: In total, 12 mice heart and lung plans were generated for both IMRT and TVR-IMRT cases. Across all cases, it was found that TVR-IMRT reduced the total variation of compensator beamlet thicknesses and beamlet intensities by 54 ± 4 % $54\pm 4\%$ and 50 ± 3 % $50\pm 3\%$ on average when compared to standard 3D-printed compensator IMRT. On average, the total mass of compensator material consumed and radiation beam-on time were reduced by 45 ± 6 % $45\pm 6\%$ and 24 ± 4 % $24\pm 4\%$ , respectively, whereas dose metrics remained comparable. Heart plan compensators were printed and delivered to film and subsequent gamma analysis performed for each of the single fields as well as the composite dose. For the composite delivery, a passing rate of 89.1% for IMRT and 95.4% for TVR-IMRT was achieved for a 3 % / 0.3 $3\%/0.3$ mm criterion. CONCLUSIONS: TVR can be applied to small animal IMRT beamlet intensities to produce fluence maps and subsequent 3D-printed compensator patterns with significantly less complexity while still maintaining similar dose conformity to traditional IMRT. This can simplify/accelerate the 3D printing process, reduce the amount of filament required, and reduce overall beam-on time to deliver a plan.


Assuntos
Radioterapia de Intensidade Modulada , Animais , Pulmão , Camundongos , Impressão Tridimensional , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
13.
J Appl Clin Med Phys ; 23(6): e13587, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344266

RESUMO

PURPOSE/OBJECTIVE(S): Whole brain radiotherapy with hippocampal avoidance (HA-WBRT) is a technique utilized to treat metastatic brain disease while preserving memory and neurocognitive function. We hypothesized that the treatment planning and delivery of HA-WBRT plans is feasible with an MRI-guided linear accelerator (linac) and compared plan results with clinical non-MRI-guided C-Arm linac plans. MATERIALS/METHODS: Twelve HA-WBRT patients treated on a non-MRI-guided C-Arm linac were selected for retrospective analysis. Treatment plans were developed using a 0.35T MRI-guided linac system for comparison to clinical plans. Treatment planning goals were defined as provided in the Phase II Trial NRG CC001. MRI-guided radiotherapy (MRgRT) treatment plans were developed by a dosimetrist and compared with clinical plans. quality assurance (QA) plans were generated and delivered on the MRI-guided linac to a cylindrical diode detector array. Planning target volume (PTV) coverage was normalized to ∼95% to provide a control point for comparison of dose to the organs at risk. RESULTS: MRgRT plans were deliverable and met all clinical goals. Mean values demonstrated that the clinical plans were less heterogeneous than MRgRT plans with mean PTV V37.5 Gy of 0.00% and 0.03% (p = 0.013), respectively. Average hippocampi maximum doses were 14.19 ± 1.29 Gy and 15.00 ± 1.51 Gy, respectively. The gamma analysis comparing planned and measured doses resulted in a mean of 99.9% ± 0.12% of passing points (3%/2mm criteria). MRgRT plans had an average of 38.33 beams with average total delivery time and beam-on time of 13.7 (11.2-17.5) min and 4.1 (3.2-5.4) min, respectively. Clinical plan delivery times ranged from 3 to 7 min depending on the number of noncoplanar arcs. Planning time between the clinical and MRgRT plans was comparable. CONCLUSION: This study demonstrates that HA-WBRT can be treated using an MRI-guided linear accelerator with comparable treatment plan quality and delivery accuracy.


Assuntos
Radioterapia de Intensidade Modulada , Ensaios Clínicos Fase II como Assunto , Estudos de Viabilidade , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
14.
Technol Cancer Res Treat ; 20: 15330338211063033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855577

RESUMO

Purpose: To monitor intrafraction motion during spine stereotactic body radiotherapy(SBRT) treatment delivery with readily available technology, we implemented triggered kV imaging using the on-board imager(OBI) of a modern medical linear accelerator with an advanced imaging package. Methods: Triggered kV imaging for intrafraction motion management was tested with an anthropomorphic phantom and simulated spine SBRT treatments to the thoracic and lumbar spine. The vertebral bodies and spinous processes were contoured as the image guided radiotherapy(IGRT) structures specific to this technique. Upon each triggered kV image acquisition, 2D projections of the IGRT structures were automatically calculated and updated at arbitrary angles for display on the kV images. Various shifts/rotations were introduced in x, y, z, pitch, and yaw. Gantry-angle-based triggering was set to acquire kV images every 45°. A group of physicists/physicians(n = 10) participated in a survey to evaluate clinical efficiency and accuracy of clinical decisions on images containing various phantom shifts. This method was implemented clinically for treatment of 42 patients(94 fractions) with 15 second time-based triggering. Result: Phantom images revealed that IGRT structure accuracy and therefore utility of projected contours during triggered imaging improved with smaller CT slice thickness. Contouring vertebra superior and inferior to the treatment site was necessary to detect clinically relevant phantom rotation. From the survey, detectability was proportional to the shift size in all shift directions and inversely related to the CT slice thickness. Clinical implementation helped evaluate robustness of patient immobilization. Based on visual inspection of projected IGRT contours on planar kV images, appreciable intrafraction motion was detected in eleven fractions(11.7%). Discussion: Feasibility of triggered imaging for spine SBRT intrafraction motion management has been demonstrated in phantom experiments and implementation for patient treatments. This technique allows efficient, non-invasive monitoring of patient position using the OBI and patient anatomy as a direct visual guide.


Assuntos
Fracionamento da Dose de Radiação , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos da radiação , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/normas , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/normas , Tomografia Computadorizada por Raios X
15.
J Magn Reson ; 328: 107009, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058712

RESUMO

Total variation (TV) minimization algorithm is an effective algorithm capable of accurately reconstructing images from sparse projection data in a variety of imaging modalities including computed tomography (CT) and electron paramagnetic resonance imaging (EPRI). The data divergence constrained, TV minimization (DDcTV) model and its Chambolle-Pock (CP) solving algorithm have been proposed for CT. However, when the DDcTV-CP algorithm is applied to 3D EPRI, it suffers from slow convergence rate or divergence. We hypothesize that this is due to the magnitude imbalance between the data fidelity term and the TV regularization term. In this work, we propose a balanced TV (bTV) model incorporating a balance parameter and demonstrate its capability to avoid convergence issues for the 3D EPRI application. Simulation and real experiments show that the DDcTV-CP algorithm cannot guarantee convergence but the bTV-CP algorithm may guarantee convergence and achieve fast convergence by use of an appropriate balance parameter. Experiments also show that underweighting the balance parameter leads to slow convergence, whereas overweighting the balance parameter leads to divergence. The iteration-behavior change-law with the variation of the balance parameter is explained by use of the data tolerance ellipse and gradient descent principle. The findings and insights gained in this work may be applied to other imaging modalities and other constrained optimization problems.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Imageamento Tridimensional , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
16.
J Appl Clin Med Phys ; 22(3): 196-206, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33626240

RESUMO

PURPOSE: Immune checkpoint inhibitors improve survival in metastatic diseases for some cancers. Multisite SBRT with pembrolizumab (SBRT + Pembro) was shown to be safe with promising local control using biologically effective doses (BEDs) = 95-120 Gy. Increased BED may improve response rate; however, SBRT doses are limited by surrounding organs at risk (OARs). The purpose of this work was to develop and validate methods for safe delivery of ultra-high doses of radiation (BED10  > 300) to be used in future clinical trials. METHODS AND MATERIALS: The radiation plans from 15 patients enrolled on a phase I trial of SBRT + pembro were reanalyzed. Metastatic disease sites included liver (8/15), inguinal region (1/15), pelvis (2/15), lung (1/15), abdomen (1/15), spleen (1/15), and groin (1/15). Gross tumor volumes (GTVs) ranged from 80 to 708 cc. Following the same methodology used in the Phase I trial on which these patients were treated, GTVs > 65 cc were contracted to a 65 cc subvolume (SubGTV) resulting in only a portion of the GTV receiving prescription dose. Volumetric modulated arc therapy (VMAT) was used to plan treatments BED10  = 360 Gy. Plans utilizing both 6FFF and 10FFF beams were compared to clinical plans delivering BED10  = 112.50 Gy. The target primary goal was V100% > 95% with a secondary goal of V70% > 99% and OAR objectives per the trial. To demonstrate feasibility, plans were delivered to a diode array phantom and evaluated for fidelity using gamma analysis. RESULTS: All 30 plans met the secondary coverage goal and satisfied all OAR constraints. The primary goal was achieved in 12/15 of the 6FFF plans and 13/15 of the 10FFF plans. Average gamma analysis passing rate using criteria of 3% dose difference and 3, 2, and 1 mm were 99.1  ±  1.0%, 98.5  ±  1.6%, and 95.1  ±  3.8%, respectively. CONCLUSION: Novel VMAT planning approaches with clinical treatment planning software and linear accelerators prove capable of delivering radiation doses in excess of 360 Gy BED10 to tumor subvolumes, while maintaining safe OAR doses.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Humanos , Imunoterapia , Neoplasias Pulmonares/cirurgia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
17.
J Appl Clin Med Phys ; 22(2): 21-34, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33452738

RESUMO

The Halcyon™ platform is self-contained, combining a treatment planning (Eclipse) system TPS) with information management and radiation delivery components. The standard TPS beam model is configured and locked down by the vendor. A portal dosimetry-based system for patient-specific QA (PSQA) is also included. While ensuring consistency across the user base, this closed model may not be optimal for every department. We set out to commission independent TPS (RayStation 9B, RaySearch Laboratories) and PSQA (PerFraction, Sun Nuclear Corp.) systems for use with the Halcyon linac. The output factors and PDDs for very small fields (0.5 × 0.5 cm2 ) were collected to augment the standard Varian dataset. The MLC leaf-end parameters were estimated based on the various static and dynamic tests with simple model fields and honed by minimizing the mean and standard deviation of dose difference between the ion chamber measurements and RayStation Monte Carlo calculations for 15 VMAT and IMRT test plans. Two chamber measurements were taken per plan, in the high (isocenter) and lower dose regions. The ratio of low to high doses ranged from 0.4 to 0.8. All percent dose differences were expressed relative to the local dose. The mean error was 0.0 ± 1.1% (TG119-style confidence limit ± 2%). Gamma analysis with the helical diode array using the standard 3%Global/2mm criteria resulted in the average passing rate of 99.3 ± 0.5% (confidence limit 98.3%-100%). The average local dose error for all detectors across all plans was 0.2% ± 5.3%. The ion chamber results compared favorably with our recalculation with Eclipse and PerFraction, as well as with several published Eclipse reports. Dose distribution gamma analysis comparisons between RayStation and PerFraction with 2%Local/2mm criteria yielded an average passing rate of 98.5% ± 0.8% (confidence limit 96.9%-100%). It is feasible to use the Halcyon accelerator with independent planning and verification systems without sacrificing dosimetric accuracy.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica
18.
Int J Radiat Oncol Biol Phys ; 110(2): 551-565, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373659

RESUMO

PURPOSE: Preclinical radiation replicating clinical intensity modulated radiation therapy (IMRT) techniques can provide data translatable to clinical practice. For this work, treatment plans were created for oxygen-guided dose-painting in small animals using inverse-planned IMRT. Spatially varying beam intensities were achieved using 3-dimensional (3D)-printed compensators. METHODS AND MATERIALS: Optimized beam fluence from arbitrary gantry angles was determined using a verified model of the XRAD225Cx treatment beam. Compensators were 3D-printed with varied thickness to provide desired attenuation using copper/polylactic-acid. Spatial resolution capabilities were investigated using printed test-patterns. Following American Association of Physicists in Medicine TG119, a 5-beam IMRT plan was created for a miniaturized (∼1/8th scale) C-shape target. Electron paramagnetic resonance imaging of murine tumor oxygenation guided simultaneous integrated boost (SIB) plans conformally treating tumor to a base dose (Rx1) with boost (Rx2) based on tumor oxygenation. The 3D-printed compensator intensity modulation accuracy and precision was evaluated by individually delivering each field to a phantom containing radiochromic film and subsequent per-field gamma analysis. The methodology was validated end-to-end with composite delivery (incorporating 3D-printed tungsten/polylactic-acid beam trimmers to reduce out-of-field leakage) of the oxygen-guided SIB plan to a phantom containing film and subsequent gamma analysis. RESULTS: Resolution test-patterns demonstrate practical printer resolution of ∼0.7 mm, corresponding to 1.0 mm bixels at the isocenter. The miniaturized C-shape plan provides planning target volume coverage (V95% = 95%) with organ sparing (organs at risk Dmax < 50%). The SIB plan to hypoxic tumor demonstrates the utility of this approach (hypoxic tumor V95%,Rx2 = 91.6%, normoxic tumor V95%,Rx1 = 95.7%, normal tissue V100%,Rx1 = 7.1%). The more challenging SIB plan to boost the normoxic tumor rim achieved normoxic tumor V95%,Rx2 = 90.9%, hypoxic tumor V95%,Rx1 = 62.7%, and normal tissue V100%,Rx2 = 5.3%. Average per-field gamma passing rates using 3%/1.0 mm, 3%/0.7 mm, and 3%/0.5 mm criteria were 98.8% ± 2.8%, 96.6% ± 4.1%, and 90.6% ± 5.9%, respectively. Composite delivery of the hypoxia boost plan and gamma analysis (3%/1 mm) gave passing results of 95.3% and 98.1% for the 2 measured orthogonal dose planes. CONCLUSIONS: This simple and cost-effective approach using 3D-printed compensators for small-animal IMRT provides a methodology enabling preclinical studies that can be readily translated into the clinic. The presented oxygen-guided dose-painting demonstrates that this methodology will facilitate studies driving much needed biologic personalization of radiation therapy for improvements in patient outcomes.


Assuntos
Fibrossarcoma/radioterapia , Impressão Tridimensional , Radioterapia de Intensidade Modulada/instrumentação , Animais , Cobre , Espectroscopia de Ressonância de Spin Eletrônica , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/metabolismo , Camundongos , Tratamentos com Preservação do Órgão/métodos , Oxigênio/metabolismo , Imagens de Fantasmas , Poliésteres , Estudo de Prova de Conceito , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Hipóxia Tumoral , Filme para Raios X
19.
Clin Transl Radiat Oncol ; 25: 102-106, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204858

RESUMO

AIMS: To assess the safety and efficacy of MR-guided stereotactic body radiation therapy (MRgSBRT) for cardiac metastases. MATERIALS/METHODS: This single institution retrospective analysis evaluated our experience with MRgSBRT for cardiac metastases. Response rate was compared between pre-RT and post-RT imaging. Symptomatic changes were also tracked and documented. RESULTS: Between 4/2019 and 3/2020, five patients with cardiac metastases (4 intracardiac and 1 pericardial) were treated with MRgSBRT. Median age at treatment was 73 years (range 64-80) and two patients had pre-existing cardiac disease. Histologies included melanoma and breast adenocarcinoma. Median lesion diameter was 2 cm (range 1.96-5.8 cm). Three patients were symptomatic, one of whom had pulmonary hypertension and RV enlargement. Another patient had an asymptomatic arrythmia. Median PTV prescribed dose was 40 Gy (range 40-50 Gy) and delivered in five fractions on nonconsecutive days. Median PTV volume was 53.4 cc (range 8.7-116.6 cc) and median coverage was 95% (range 84.1-100%). A uniform 3 mm margin was used for real-time gating, allowing a median 7% (range 5-10%) pixel excursion tolerance. Median follow-up was 4.7 months (range 0.9-12.3). Two patients exhibited stable disease, two had a partial response and one exhibited a complete response. All symptomatic patients experienced some relief. There were no acute adverse events, however, one patient without prior cardiac disease developed atrial fibrillation 6 months after treatment. Two patients died of causes unrelated to cardiac MRgSBRT. CONCLUSION: In this largest known series of cardiac metastasis MRgSBRT, real-time image guidance enables safe treatment resulting in good response with improving presenting symptoms without acute adverse events.

20.
Cancer Control ; 27(1): 1073274820964800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33023342

RESUMO

Emergence of the COVID-19 crisis has catalyzed rapid paradigm shifts throughout medicine. Even after the initial wave of the virus subsides, a wholesale return to the prior status quo is not prudent. As a specialty that values the proper application of new technology, radiation oncology should strive to be at the forefront of harnessing telehealth as an important tool to further optimize patient care. We remain cognizant that telehealth cannot and should not be a comprehensive replacement for in-person patient visits because it is not a one for one replacement, dependent on the intention of the visit and patient preference. However, we envision the opportunity for the virtual patient "room" where multidisciplinary care may take place from every specialty. How we adapt is not an inevitability, but instead, an opportunity to shape the ideal image of our new normal through the choices that we make. We have made great strides toward genuine multidisciplinary patient-centered care, but the continued use of telehealth and virtual visits can bring us closer to optimally arranging the spokes of the provider team members around the central hub of the patient as we progress down the road through treatment.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Neoplasias/diagnóstico , Aceitação pelo Paciente de Cuidados de Saúde , Quartos de Pacientes/organização & administração , Pneumonia Viral/epidemiologia , Telemedicina/métodos , Realidade Virtual , COVID-19 , Comorbidade , Humanos , Neoplasias/epidemiologia , Pandemias , Satisfação do Paciente , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...